This report explores how various mechanisms effect the response time of event-based cameras (EBCs) are based on unconventional electro-optical IR vision sensors, which are only sensitive to changing light. Because their operation is essentially “frameless,” their response time is not dependent to a frame rate or readout time, but rather the number of activated pixels, the magnitude of background light, local fabrication defects, and analog configuration of the pixel.blurry image and the concurrent event streams.
This paper presents a methodology and a software pipeline for generating event-based vision datasets from optimal landing trajectories during the approach of a target body. It constructs sequences of photorealistic images of the lunar surface with the Planet and Asteroid Natural Scene Generation Utility (PANGU) at different viewpoints along a set of optimal descent trajectories obtained by varying the boundary conditions.
This paper presents the implementation of time-resolved velocity profile measurement using event-based vision
(EBV) employing an event-camera in-place of a high-speed camera.
This paper presents the modelling and preliminary experimental results of a Shack-Hartmann tip-tilt wavefront sensor equipped with an event-based detector, demonstrating its ability to estimate spot displacement with remarkable speed and sensitivity in low-light conditions.
This paper proposes a novel, computationally efficient regularizer to mitigate event collapse in the CMax framework. From a theoretical point of view, the regularizer is designed based on geometric principles of motion field deformation (measuring area rate of change along point trajectories).