Real-Time Face & Eye Tracking and Blink Detection using Event Cameras

Real-Time Face & Eye Tracking and Blink Detection using Event Cameras

This paper proposes a novel method to simultaneously detect and track faces and eyes for driver monitoring. A unique, fully convolutional recurrent neural network architecture is presented. To train this network, a synthetic event-based dataset is simulated with accurate bounding box annotations, called Neuromorphic HELEN.

Tracking-Assisted Object Detection with Event Cameras

Tracking-Assisted Object Detection with Event Cameras

Lastly, we propose a spatio-temporal feature aggregation module to enrich the latent features and a consistency loss to increase the robustness of the overall pipeline. We conduct comprehensive experiments to verify our method’s effectiveness where still objects are retained, but real occluded objects are discarded.

Detection and Tracking With Event Based Sensors

Detection and Tracking With Event Based Sensors

The MSMO algorithm uses the velocities of each event to create an average of the scene and filter out dissimilar events. This work shows the study performed on the velocity values of the events and explains why ultimately an average-based velocity filter is insufficient for lightweight MSMO detection and tracking of objects using an EBS camera.