The pioneering work Time Lens introduced event cameras to video interpolation by designing optical devices to collect a large amount of paired training data of high-speed frames and events, which is too costly to scale. To fully unlock the potential of event cameras, this paper proposes a novel TimeReplayer algorithm to interpolate videos captured by commodity cameras with events.
We conduct benchmark experiments for the existing methods in some representative research directions, i.e., image reconstruction, deblurring, and object recognition, to identify some critical insights and problems. Finally, we have discussions regarding the challenges and provide new perspectives for inspiring more research studies.
This paper proposes a novel method to simultaneously detect and track faces and eyes for driver monitoring. A unique, fully convolutional recurrent neural network architecture is presented. To train this network, a synthetic event-based dataset is simulated with accurate bounding box annotations, called Neuromorphic HELEN.
Lastly, we propose a spatio-temporal feature aggregation module to enrich the latent features and a consistency loss to increase the robustness of the overall pipeline. We conduct comprehensive experiments to verify our method’s effectiveness where still objects are retained, but real occluded objects are discarded.
The MSMO algorithm uses the velocities of each event to create an average of the scene and filter out dissimilar events. This work shows the study performed on the velocity values of the events and explains why ultimately an average-based velocity filter is insufficient for lightweight MSMO detection and tracking of objects using an EBS camera.